领先的免费Web技术教程,涵盖HTML到ASP.NET

网站首页 > 知识剖析 正文

Arrays.sort()方法到底用的什么排序算法(2)

nixiaole 2024-11-26 07:15:47 知识剖析 19 ℃

写这张之前我们需要先了解一下TIMSORT

TimSort算法是一种起源于归并排序和插入排序的混合排序算法,设计初衷是为了在真实世界中的各种数据中可以有较好的性能。该算法最初是由Tim Peters于2002年在Python语言中提出的。

TimSort 是一个归并排序做了大量优化的版本。对归并排序排在已经反向排好序的输入时表现O(n2)的特点做了特别优化。对已经正向排好序的输入减少回溯。对两种情况混合(一会升序,一会降序)的输入处理比较好。


上一篇文章我们讲解了 arrays.sort 里面的legacyMergeSort 这一篇我们讲解最重要的一个算法ComparableTimSort.sort

    static void sort(Object[] a, int lo, int hi, Object[] work, int workBase, int workLen) {
        assert a != null && lo >= 0 && lo <= hi && hi <= a.length;

        int nRemaining  = hi - lo;
        if (nRemaining < 2)
            return;  // 当数组的大小是 0 或 1 时  数组总是有序的所以直接返回即可

        // 这里  MIN_MERGE=32
        if (nRemaining < MIN_MERGE) {
            int initRunLen = countRunAndMakeAscending(a, lo, hi);
            binarySort(a, lo, hi, lo + initRunLen);
            return;
        }

        /**
         * March over the array once, left to right, finding natural runs,
         * extending short natural runs to minRun elements, and merging runs
         * to maintain stack invariant.
         */
   // 开始真正的tim sort 过程
        ComparableTimSort ts = new ComparableTimSort(a, work, workBase, workLen);
        int minRun = minRunLength(nRemaining);
        do {
            // Identify next run
            int runLen = countRunAndMakeAscending(a, lo, hi);

            // If run is short, extend to min(minRun, nRemaining)
            if (runLen < minRun) {
                int force = nRemaining <= minRun ? nRemaining : minRun;
                binarySort(a, lo, lo + force, lo + runLen);
                runLen = force;
            }

            // Push run onto pending-run stack, and maybe merge
            ts.pushRun(lo, runLen);
            ts.mergeCollapse();

            // Advance to find next run
            lo += runLen;
            nRemaining -= runLen;
        } while (nRemaining != 0);

        // Merge all remaining runs to complete sort
        assert lo == hi;
        ts.mergeForceCollapse();
        assert ts.stackSize == 1;
    }


a) 从数组开始处找到一组连接升序或严格降序(找到后翻转)的数
b) Binary Sort:使用二分查找的方法将后续的数插入之前的已排序数组,binarySort 对数组 a[lo:hi] 进行排序,并且a[lo:start]是已经排好序的。算法的思路是对a[start:hi] 中的元素,每次使用binarySearch 为它在 a[lo:start] 中找到相应位置,并插入。


开始真正的TimSort过程:

选取minRun大小,之后待排序数组将被分成以minRun大小为区块的一块块子数组

    private static int minRunLength(int n) {
        assert n >= 0;
        int r = 0;      // Becomes 1 if any 1 bits are shifted off
        while (n >= MIN_MERGE) {
            r |= (n & 1);
            n >>= 1;
        }
        return n + r;
    }
//这个函数根据 n 计算出对应的 natural run 的最小长度。
//MIN_MERGE 默认为32,如果n小于此值,那么返回n 本身。
//否则会将 n 不断地右移,直到少于 MIN_MERGE,同时记录一个 r 值,
//r 代表最后一次移位n时,n最低位是0还是1。 最后返回 n + r,这也意味着只保留最高的 5 位,再加上第六位。

a) 如果数组大小为2的N次幂,则返回16(MIN_MERGE / 2)
b) 其他情况下,逐位向右位移(即除以2),直到找到介于16和32间的一个数

do-while

  1. 找到初始的一组升序数列,countRunAndMakeAscending 会找到一个run ,这个run 必须是已经排序的,并且函数会保证它为升序,也就是说,如果找到的是一个降序的,会对其进行翻转。

2 若这组区块大小小于minRun,则将后续的数补足,利用binarySort 对 run 进行扩展,并且扩展后,run 仍然是有序的。

3 当前的 run 位于 a[lo:runLen] ,将其入栈ts.pushRun(lo, runLen);//为后续merge各区块作准备:记录当前已排序的各区块的大小

4.对当前的各区块进行merge,merge会满足以下原则(假设X,Y,Z为相邻的三个区块):

a) 只对相邻的区块merge
b) 若当前区块数仅为2,If X<=Y,将X和Y merge
b) 若当前区块数>=3,If X<=Y+Z,将X和Y merge,直到同时满足X>Y+Z和Y>Z

由于要合并的两个 run 是已经排序的,所以合并的时候,有会特别的技巧。假设两个 run 是 run1,run2 ,先用 gallopRight在 run1里使用 binarySearch 查找run2 首元素 的位置k, 那么 run1 中 k 前面的元素就是合并后最小的那些元素。然后,在run2 中查找run1 尾元素 的位置 len2 ,那么run2 中 len2 后面的那些元素就是合并后最大的那些元素。最后,根据len1 与len2 大小,调用mergeLo或者 mergeHi 将剩余元素合并。

5 重复 1 ~ 4,直到将待排序数组排序完
6 Final Merge:如果此时还有区块
merge,则合并它们.

Tags:

最近发表
标签列表